metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.16D28, C24.16D14, (C2×C28)⋊7D4, C14.34C22≀C2, C2.7(C28⋊2D4), C2.8(C28⋊7D4), (C2×Dic7).57D4, (C22×D7).32D4, (C22×C14).70D4, C22.243(D4×D7), (C22×C4).36D14, C14.60(C4⋊D4), C22.127(C2×D28), C7⋊3(C23.10D4), C2.35(C22⋊D28), C14.C42⋊18C2, C14.36(C4.4D4), (C22×C28).62C22, (C23×C14).44C22, (C23×D7).17C22, C23.373(C22×D7), C2.11(Dic7⋊D4), C2.23(D14.D4), C22.101(C4○D28), C22.98(D4⋊2D7), (C22×C14).335C23, C2.23(Dic7.D4), C2.17(C22.D28), C14.35(C22.D4), (C22×Dic7).47C22, (C2×D14⋊C4)⋊9C2, (C2×C4)⋊4(C7⋊D4), (C2×C22⋊C4)⋊9D7, (C2×C4⋊Dic7)⋊13C2, (C2×C23.D7)⋊6C2, (C14×C22⋊C4)⋊12C2, (C2×C14).326(C2×D4), (C22×C7⋊D4).6C2, (C2×C14).81(C4○D4), C22.129(C2×C7⋊D4), SmallGroup(448,495)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.16D28
G = < a,b,c,d,e | a2=b2=c2=d28=1, e2=c, ab=ba, dad-1=ac=ca, eae-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=cd-1 >
Subgroups: 1268 in 238 conjugacy classes, 63 normal (51 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, C23, D7, C14, C14, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C24, Dic7, C28, D14, C2×C14, C2×C14, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C22×D4, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×D7, C22×C14, C22×C14, C22×C14, C23.10D4, C4⋊Dic7, D14⋊C4, C23.D7, C7×C22⋊C4, C22×Dic7, C2×C7⋊D4, C22×C28, C23×D7, C23×C14, C14.C42, C2×C4⋊Dic7, C2×D14⋊C4, C2×C23.D7, C14×C22⋊C4, C22×C7⋊D4, C23.16D28
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C22≀C2, C4⋊D4, C22.D4, C4.4D4, D28, C7⋊D4, C22×D7, C23.10D4, C2×D28, C4○D28, D4×D7, D4⋊2D7, C2×C7⋊D4, C22⋊D28, D14.D4, Dic7.D4, C22.D28, C28⋊7D4, C28⋊2D4, Dic7⋊D4, C23.16D28
(2 136)(4 138)(6 140)(8 114)(10 116)(12 118)(14 120)(16 122)(18 124)(20 126)(22 128)(24 130)(26 132)(28 134)(29 112)(30 74)(31 86)(32 76)(33 88)(34 78)(35 90)(36 80)(37 92)(38 82)(39 94)(40 84)(41 96)(42 58)(43 98)(44 60)(45 100)(46 62)(47 102)(48 64)(49 104)(50 66)(51 106)(52 68)(53 108)(54 70)(55 110)(56 72)(57 196)(59 170)(61 172)(63 174)(65 176)(67 178)(69 180)(71 182)(73 184)(75 186)(77 188)(79 190)(81 192)(83 194)(85 185)(87 187)(89 189)(91 191)(93 193)(95 195)(97 169)(99 171)(101 173)(103 175)(105 177)(107 179)(109 181)(111 183)(141 198)(143 200)(145 202)(147 204)(149 206)(151 208)(153 210)(155 212)(157 214)(159 216)(161 218)(163 220)(165 222)(167 224)
(1 205)(2 206)(3 207)(4 208)(5 209)(6 210)(7 211)(8 212)(9 213)(10 214)(11 215)(12 216)(13 217)(14 218)(15 219)(16 220)(17 221)(18 222)(19 223)(20 224)(21 197)(22 198)(23 199)(24 200)(25 201)(26 202)(27 203)(28 204)(29 73)(30 74)(31 75)(32 76)(33 77)(34 78)(35 79)(36 80)(37 81)(38 82)(39 83)(40 84)(41 57)(42 58)(43 59)(44 60)(45 61)(46 62)(47 63)(48 64)(49 65)(50 66)(51 67)(52 68)(53 69)(54 70)(55 71)(56 72)(85 185)(86 186)(87 187)(88 188)(89 189)(90 190)(91 191)(92 192)(93 193)(94 194)(95 195)(96 196)(97 169)(98 170)(99 171)(100 172)(101 173)(102 174)(103 175)(104 176)(105 177)(106 178)(107 179)(108 180)(109 181)(110 182)(111 183)(112 184)(113 154)(114 155)(115 156)(116 157)(117 158)(118 159)(119 160)(120 161)(121 162)(122 163)(123 164)(124 165)(125 166)(126 167)(127 168)(128 141)(129 142)(130 143)(131 144)(132 145)(133 146)(134 147)(135 148)(136 149)(137 150)(138 151)(139 152)(140 153)
(1 135)(2 136)(3 137)(4 138)(5 139)(6 140)(7 113)(8 114)(9 115)(10 116)(11 117)(12 118)(13 119)(14 120)(15 121)(16 122)(17 123)(18 124)(19 125)(20 126)(21 127)(22 128)(23 129)(24 130)(25 131)(26 132)(27 133)(28 134)(29 184)(30 185)(31 186)(32 187)(33 188)(34 189)(35 190)(36 191)(37 192)(38 193)(39 194)(40 195)(41 196)(42 169)(43 170)(44 171)(45 172)(46 173)(47 174)(48 175)(49 176)(50 177)(51 178)(52 179)(53 180)(54 181)(55 182)(56 183)(57 96)(58 97)(59 98)(60 99)(61 100)(62 101)(63 102)(64 103)(65 104)(66 105)(67 106)(68 107)(69 108)(70 109)(71 110)(72 111)(73 112)(74 85)(75 86)(76 87)(77 88)(78 89)(79 90)(80 91)(81 92)(82 93)(83 94)(84 95)(141 198)(142 199)(143 200)(144 201)(145 202)(146 203)(147 204)(148 205)(149 206)(150 207)(151 208)(152 209)(153 210)(154 211)(155 212)(156 213)(157 214)(158 215)(159 216)(160 217)(161 218)(162 219)(163 220)(164 221)(165 222)(166 223)(167 224)(168 197)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 47 135 174)(2 173 136 46)(3 45 137 172)(4 171 138 44)(5 43 139 170)(6 169 140 42)(7 41 113 196)(8 195 114 40)(9 39 115 194)(10 193 116 38)(11 37 117 192)(12 191 118 36)(13 35 119 190)(14 189 120 34)(15 33 121 188)(16 187 122 32)(17 31 123 186)(18 185 124 30)(19 29 125 184)(20 183 126 56)(21 55 127 182)(22 181 128 54)(23 53 129 180)(24 179 130 52)(25 51 131 178)(26 177 132 50)(27 49 133 176)(28 175 134 48)(57 154 96 211)(58 210 97 153)(59 152 98 209)(60 208 99 151)(61 150 100 207)(62 206 101 149)(63 148 102 205)(64 204 103 147)(65 146 104 203)(66 202 105 145)(67 144 106 201)(68 200 107 143)(69 142 108 199)(70 198 109 141)(71 168 110 197)(72 224 111 167)(73 166 112 223)(74 222 85 165)(75 164 86 221)(76 220 87 163)(77 162 88 219)(78 218 89 161)(79 160 90 217)(80 216 91 159)(81 158 92 215)(82 214 93 157)(83 156 94 213)(84 212 95 155)
G:=sub<Sym(224)| (2,136)(4,138)(6,140)(8,114)(10,116)(12,118)(14,120)(16,122)(18,124)(20,126)(22,128)(24,130)(26,132)(28,134)(29,112)(30,74)(31,86)(32,76)(33,88)(34,78)(35,90)(36,80)(37,92)(38,82)(39,94)(40,84)(41,96)(42,58)(43,98)(44,60)(45,100)(46,62)(47,102)(48,64)(49,104)(50,66)(51,106)(52,68)(53,108)(54,70)(55,110)(56,72)(57,196)(59,170)(61,172)(63,174)(65,176)(67,178)(69,180)(71,182)(73,184)(75,186)(77,188)(79,190)(81,192)(83,194)(85,185)(87,187)(89,189)(91,191)(93,193)(95,195)(97,169)(99,171)(101,173)(103,175)(105,177)(107,179)(109,181)(111,183)(141,198)(143,200)(145,202)(147,204)(149,206)(151,208)(153,210)(155,212)(157,214)(159,216)(161,218)(163,220)(165,222)(167,224), (1,205)(2,206)(3,207)(4,208)(5,209)(6,210)(7,211)(8,212)(9,213)(10,214)(11,215)(12,216)(13,217)(14,218)(15,219)(16,220)(17,221)(18,222)(19,223)(20,224)(21,197)(22,198)(23,199)(24,200)(25,201)(26,202)(27,203)(28,204)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,81)(38,82)(39,83)(40,84)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64)(49,65)(50,66)(51,67)(52,68)(53,69)(54,70)(55,71)(56,72)(85,185)(86,186)(87,187)(88,188)(89,189)(90,190)(91,191)(92,192)(93,193)(94,194)(95,195)(96,196)(97,169)(98,170)(99,171)(100,172)(101,173)(102,174)(103,175)(104,176)(105,177)(106,178)(107,179)(108,180)(109,181)(110,182)(111,183)(112,184)(113,154)(114,155)(115,156)(116,157)(117,158)(118,159)(119,160)(120,161)(121,162)(122,163)(123,164)(124,165)(125,166)(126,167)(127,168)(128,141)(129,142)(130,143)(131,144)(132,145)(133,146)(134,147)(135,148)(136,149)(137,150)(138,151)(139,152)(140,153), (1,135)(2,136)(3,137)(4,138)(5,139)(6,140)(7,113)(8,114)(9,115)(10,116)(11,117)(12,118)(13,119)(14,120)(15,121)(16,122)(17,123)(18,124)(19,125)(20,126)(21,127)(22,128)(23,129)(24,130)(25,131)(26,132)(27,133)(28,134)(29,184)(30,185)(31,186)(32,187)(33,188)(34,189)(35,190)(36,191)(37,192)(38,193)(39,194)(40,195)(41,196)(42,169)(43,170)(44,171)(45,172)(46,173)(47,174)(48,175)(49,176)(50,177)(51,178)(52,179)(53,180)(54,181)(55,182)(56,183)(57,96)(58,97)(59,98)(60,99)(61,100)(62,101)(63,102)(64,103)(65,104)(66,105)(67,106)(68,107)(69,108)(70,109)(71,110)(72,111)(73,112)(74,85)(75,86)(76,87)(77,88)(78,89)(79,90)(80,91)(81,92)(82,93)(83,94)(84,95)(141,198)(142,199)(143,200)(144,201)(145,202)(146,203)(147,204)(148,205)(149,206)(150,207)(151,208)(152,209)(153,210)(154,211)(155,212)(156,213)(157,214)(158,215)(159,216)(160,217)(161,218)(162,219)(163,220)(164,221)(165,222)(166,223)(167,224)(168,197), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,47,135,174)(2,173,136,46)(3,45,137,172)(4,171,138,44)(5,43,139,170)(6,169,140,42)(7,41,113,196)(8,195,114,40)(9,39,115,194)(10,193,116,38)(11,37,117,192)(12,191,118,36)(13,35,119,190)(14,189,120,34)(15,33,121,188)(16,187,122,32)(17,31,123,186)(18,185,124,30)(19,29,125,184)(20,183,126,56)(21,55,127,182)(22,181,128,54)(23,53,129,180)(24,179,130,52)(25,51,131,178)(26,177,132,50)(27,49,133,176)(28,175,134,48)(57,154,96,211)(58,210,97,153)(59,152,98,209)(60,208,99,151)(61,150,100,207)(62,206,101,149)(63,148,102,205)(64,204,103,147)(65,146,104,203)(66,202,105,145)(67,144,106,201)(68,200,107,143)(69,142,108,199)(70,198,109,141)(71,168,110,197)(72,224,111,167)(73,166,112,223)(74,222,85,165)(75,164,86,221)(76,220,87,163)(77,162,88,219)(78,218,89,161)(79,160,90,217)(80,216,91,159)(81,158,92,215)(82,214,93,157)(83,156,94,213)(84,212,95,155)>;
G:=Group( (2,136)(4,138)(6,140)(8,114)(10,116)(12,118)(14,120)(16,122)(18,124)(20,126)(22,128)(24,130)(26,132)(28,134)(29,112)(30,74)(31,86)(32,76)(33,88)(34,78)(35,90)(36,80)(37,92)(38,82)(39,94)(40,84)(41,96)(42,58)(43,98)(44,60)(45,100)(46,62)(47,102)(48,64)(49,104)(50,66)(51,106)(52,68)(53,108)(54,70)(55,110)(56,72)(57,196)(59,170)(61,172)(63,174)(65,176)(67,178)(69,180)(71,182)(73,184)(75,186)(77,188)(79,190)(81,192)(83,194)(85,185)(87,187)(89,189)(91,191)(93,193)(95,195)(97,169)(99,171)(101,173)(103,175)(105,177)(107,179)(109,181)(111,183)(141,198)(143,200)(145,202)(147,204)(149,206)(151,208)(153,210)(155,212)(157,214)(159,216)(161,218)(163,220)(165,222)(167,224), (1,205)(2,206)(3,207)(4,208)(5,209)(6,210)(7,211)(8,212)(9,213)(10,214)(11,215)(12,216)(13,217)(14,218)(15,219)(16,220)(17,221)(18,222)(19,223)(20,224)(21,197)(22,198)(23,199)(24,200)(25,201)(26,202)(27,203)(28,204)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,81)(38,82)(39,83)(40,84)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64)(49,65)(50,66)(51,67)(52,68)(53,69)(54,70)(55,71)(56,72)(85,185)(86,186)(87,187)(88,188)(89,189)(90,190)(91,191)(92,192)(93,193)(94,194)(95,195)(96,196)(97,169)(98,170)(99,171)(100,172)(101,173)(102,174)(103,175)(104,176)(105,177)(106,178)(107,179)(108,180)(109,181)(110,182)(111,183)(112,184)(113,154)(114,155)(115,156)(116,157)(117,158)(118,159)(119,160)(120,161)(121,162)(122,163)(123,164)(124,165)(125,166)(126,167)(127,168)(128,141)(129,142)(130,143)(131,144)(132,145)(133,146)(134,147)(135,148)(136,149)(137,150)(138,151)(139,152)(140,153), (1,135)(2,136)(3,137)(4,138)(5,139)(6,140)(7,113)(8,114)(9,115)(10,116)(11,117)(12,118)(13,119)(14,120)(15,121)(16,122)(17,123)(18,124)(19,125)(20,126)(21,127)(22,128)(23,129)(24,130)(25,131)(26,132)(27,133)(28,134)(29,184)(30,185)(31,186)(32,187)(33,188)(34,189)(35,190)(36,191)(37,192)(38,193)(39,194)(40,195)(41,196)(42,169)(43,170)(44,171)(45,172)(46,173)(47,174)(48,175)(49,176)(50,177)(51,178)(52,179)(53,180)(54,181)(55,182)(56,183)(57,96)(58,97)(59,98)(60,99)(61,100)(62,101)(63,102)(64,103)(65,104)(66,105)(67,106)(68,107)(69,108)(70,109)(71,110)(72,111)(73,112)(74,85)(75,86)(76,87)(77,88)(78,89)(79,90)(80,91)(81,92)(82,93)(83,94)(84,95)(141,198)(142,199)(143,200)(144,201)(145,202)(146,203)(147,204)(148,205)(149,206)(150,207)(151,208)(152,209)(153,210)(154,211)(155,212)(156,213)(157,214)(158,215)(159,216)(160,217)(161,218)(162,219)(163,220)(164,221)(165,222)(166,223)(167,224)(168,197), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,47,135,174)(2,173,136,46)(3,45,137,172)(4,171,138,44)(5,43,139,170)(6,169,140,42)(7,41,113,196)(8,195,114,40)(9,39,115,194)(10,193,116,38)(11,37,117,192)(12,191,118,36)(13,35,119,190)(14,189,120,34)(15,33,121,188)(16,187,122,32)(17,31,123,186)(18,185,124,30)(19,29,125,184)(20,183,126,56)(21,55,127,182)(22,181,128,54)(23,53,129,180)(24,179,130,52)(25,51,131,178)(26,177,132,50)(27,49,133,176)(28,175,134,48)(57,154,96,211)(58,210,97,153)(59,152,98,209)(60,208,99,151)(61,150,100,207)(62,206,101,149)(63,148,102,205)(64,204,103,147)(65,146,104,203)(66,202,105,145)(67,144,106,201)(68,200,107,143)(69,142,108,199)(70,198,109,141)(71,168,110,197)(72,224,111,167)(73,166,112,223)(74,222,85,165)(75,164,86,221)(76,220,87,163)(77,162,88,219)(78,218,89,161)(79,160,90,217)(80,216,91,159)(81,158,92,215)(82,214,93,157)(83,156,94,213)(84,212,95,155) );
G=PermutationGroup([[(2,136),(4,138),(6,140),(8,114),(10,116),(12,118),(14,120),(16,122),(18,124),(20,126),(22,128),(24,130),(26,132),(28,134),(29,112),(30,74),(31,86),(32,76),(33,88),(34,78),(35,90),(36,80),(37,92),(38,82),(39,94),(40,84),(41,96),(42,58),(43,98),(44,60),(45,100),(46,62),(47,102),(48,64),(49,104),(50,66),(51,106),(52,68),(53,108),(54,70),(55,110),(56,72),(57,196),(59,170),(61,172),(63,174),(65,176),(67,178),(69,180),(71,182),(73,184),(75,186),(77,188),(79,190),(81,192),(83,194),(85,185),(87,187),(89,189),(91,191),(93,193),(95,195),(97,169),(99,171),(101,173),(103,175),(105,177),(107,179),(109,181),(111,183),(141,198),(143,200),(145,202),(147,204),(149,206),(151,208),(153,210),(155,212),(157,214),(159,216),(161,218),(163,220),(165,222),(167,224)], [(1,205),(2,206),(3,207),(4,208),(5,209),(6,210),(7,211),(8,212),(9,213),(10,214),(11,215),(12,216),(13,217),(14,218),(15,219),(16,220),(17,221),(18,222),(19,223),(20,224),(21,197),(22,198),(23,199),(24,200),(25,201),(26,202),(27,203),(28,204),(29,73),(30,74),(31,75),(32,76),(33,77),(34,78),(35,79),(36,80),(37,81),(38,82),(39,83),(40,84),(41,57),(42,58),(43,59),(44,60),(45,61),(46,62),(47,63),(48,64),(49,65),(50,66),(51,67),(52,68),(53,69),(54,70),(55,71),(56,72),(85,185),(86,186),(87,187),(88,188),(89,189),(90,190),(91,191),(92,192),(93,193),(94,194),(95,195),(96,196),(97,169),(98,170),(99,171),(100,172),(101,173),(102,174),(103,175),(104,176),(105,177),(106,178),(107,179),(108,180),(109,181),(110,182),(111,183),(112,184),(113,154),(114,155),(115,156),(116,157),(117,158),(118,159),(119,160),(120,161),(121,162),(122,163),(123,164),(124,165),(125,166),(126,167),(127,168),(128,141),(129,142),(130,143),(131,144),(132,145),(133,146),(134,147),(135,148),(136,149),(137,150),(138,151),(139,152),(140,153)], [(1,135),(2,136),(3,137),(4,138),(5,139),(6,140),(7,113),(8,114),(9,115),(10,116),(11,117),(12,118),(13,119),(14,120),(15,121),(16,122),(17,123),(18,124),(19,125),(20,126),(21,127),(22,128),(23,129),(24,130),(25,131),(26,132),(27,133),(28,134),(29,184),(30,185),(31,186),(32,187),(33,188),(34,189),(35,190),(36,191),(37,192),(38,193),(39,194),(40,195),(41,196),(42,169),(43,170),(44,171),(45,172),(46,173),(47,174),(48,175),(49,176),(50,177),(51,178),(52,179),(53,180),(54,181),(55,182),(56,183),(57,96),(58,97),(59,98),(60,99),(61,100),(62,101),(63,102),(64,103),(65,104),(66,105),(67,106),(68,107),(69,108),(70,109),(71,110),(72,111),(73,112),(74,85),(75,86),(76,87),(77,88),(78,89),(79,90),(80,91),(81,92),(82,93),(83,94),(84,95),(141,198),(142,199),(143,200),(144,201),(145,202),(146,203),(147,204),(148,205),(149,206),(150,207),(151,208),(152,209),(153,210),(154,211),(155,212),(156,213),(157,214),(158,215),(159,216),(160,217),(161,218),(162,219),(163,220),(164,221),(165,222),(166,223),(167,224),(168,197)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,47,135,174),(2,173,136,46),(3,45,137,172),(4,171,138,44),(5,43,139,170),(6,169,140,42),(7,41,113,196),(8,195,114,40),(9,39,115,194),(10,193,116,38),(11,37,117,192),(12,191,118,36),(13,35,119,190),(14,189,120,34),(15,33,121,188),(16,187,122,32),(17,31,123,186),(18,185,124,30),(19,29,125,184),(20,183,126,56),(21,55,127,182),(22,181,128,54),(23,53,129,180),(24,179,130,52),(25,51,131,178),(26,177,132,50),(27,49,133,176),(28,175,134,48),(57,154,96,211),(58,210,97,153),(59,152,98,209),(60,208,99,151),(61,150,100,207),(62,206,101,149),(63,148,102,205),(64,204,103,147),(65,146,104,203),(66,202,105,145),(67,144,106,201),(68,200,107,143),(69,142,108,199),(70,198,109,141),(71,168,110,197),(72,224,111,167),(73,166,112,223),(74,222,85,165),(75,164,86,221),(76,220,87,163),(77,162,88,219),(78,218,89,161),(79,160,90,217),(80,216,91,159),(81,158,92,215),(82,214,93,157),(83,156,94,213),(84,212,95,155)]])
82 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 7A | 7B | 7C | 14A | ··· | 14U | 14V | ··· | 14AG | 28A | ··· | 28X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 28 | 28 | 4 | 4 | 4 | 4 | 28 | ··· | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
82 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | D7 | C4○D4 | D14 | D14 | C7⋊D4 | D28 | C4○D28 | D4×D7 | D4⋊2D7 |
kernel | C23.16D28 | C14.C42 | C2×C4⋊Dic7 | C2×D14⋊C4 | C2×C23.D7 | C14×C22⋊C4 | C22×C7⋊D4 | C2×Dic7 | C2×C28 | C22×D7 | C22×C14 | C2×C22⋊C4 | C2×C14 | C22×C4 | C24 | C2×C4 | C23 | C22 | C22 | C22 |
# reps | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 6 | 6 | 3 | 12 | 12 | 12 | 6 | 6 |
Matrix representation of C23.16D28 ►in GL6(𝔽29)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 16 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 22 | 28 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
24 | 0 | 0 | 0 | 0 | 0 |
0 | 23 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 5 | 21 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 15 |
0 | 0 | 0 | 0 | 14 | 20 |
0 | 26 | 0 | 0 | 0 | 0 |
19 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 28 | 0 | 0 |
0 | 0 | 5 | 21 | 0 | 0 |
0 | 0 | 0 | 0 | 20 | 14 |
0 | 0 | 0 | 0 | 19 | 9 |
G:=sub<GL(6,GF(29))| [1,0,0,0,0,0,0,28,0,0,0,0,0,0,1,16,0,0,0,0,0,28,0,0,0,0,0,0,1,22,0,0,0,0,0,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[24,0,0,0,0,0,0,23,0,0,0,0,0,0,18,5,0,0,0,0,0,21,0,0,0,0,0,0,9,14,0,0,0,0,15,20],[0,19,0,0,0,0,26,0,0,0,0,0,0,0,8,5,0,0,0,0,28,21,0,0,0,0,0,0,20,19,0,0,0,0,14,9] >;
C23.16D28 in GAP, Magma, Sage, TeX
C_2^3._{16}D_{28}
% in TeX
G:=Group("C2^3.16D28");
// GroupNames label
G:=SmallGroup(448,495);
// by ID
G=gap.SmallGroup(448,495);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,344,254,387,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^28=1,e^2=c,a*b=b*a,d*a*d^-1=a*c=c*a,e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=c*d^-1>;
// generators/relations